Amyotrophic lateral sclerosis (ALS) is a progressive nervous system disease that affects nerve cells in the brain and spinal cord, causing loss of muscle control. Currently, there is no treatment to reverse damage to motor neurons or to cure ALS. This disease is caused by motor neuron degeneration that results in dysfunction of the neuromuscular junction. Their degeneration result in part from hyperphosphorylation of TDP43, key peptide  involved in ALS. 

We have developed at NETRI compartmentalized microfluidic device architectures, with an enhanced fluidic isolation, to isolate somas and neurites and to understand TDP43 axonal transport in ALS.

CAPABILITIES Co-culture, hiPSC Derived Cell, Readouts
CHIP DuaLink
CELL TYPE Motor Neurons
RESOURCES Publications, Application Note, Application Protocol, Posters, Cells DataSheet
(FujiFilm CDI, BrainXell), Chip DataSheet
RELEATED PAPERS Osaki, T., Sivathanu, V., & Kamm, R. D. (2018). Engineered 3D vascular and neuronal networks in a microfluidic platform. Scientific Reports, 8(1), 1–13.
Zahavi, E. E., Ionescu, A., Gluska, S., Gradus, T., Ben-yaakov, K., & Perlson, E. (2015). RESEARCH ARTICLE A compartmentalized microfluidic neuromuscular co-culture system reveals spatial aspects of GDNF functions. Journal of Cell Science, 128(6), 1241–1252.
Osaki, T., Uzel, S. G. M. M., Kamm, R. D., T., O., S.G.M., U., Kamm R.D. AO – Osaki Roger D.; ORCID:, T. O. http://orcid. org/0000-0001-7174-0629 A. O.-K., Osaki, T., Uzel, S. G. M. M., & Kamm, R. D. (2018). Microphysiological 3D model of amyotrophic lateral sclerosis ( ALS ) from human iPS-derived muscle cells and optogenetic motor neurons. Science Advances, 4(October), 1–15.
Blizzard, C. A., Southam, K. A., Dawkins, E., Lewis, K. E., King, A. E., Clark, J. A., & Dickson, T. C. (2015). Identifying the primary site of pathogenesis in amyotrophic lateral sclerosis – vulnerability of lower motor neurons to proximal excitotoxicity. 215–224.
Westergard, T., Jensen, B. K., Wen, X., Cai, J., Kropf, E., Iacovitti, L., Pasinelli, P., & Trotti, D. (2016). Cell-to-Cell Transmission of Dipeptide Repeat Proteins Linked to C9orf72-ALS/FTD. Cell Reports, 17(3), 645–652.
Santhanam, N., Kumanchik, L., Guo, X., Sommerhage, F., Cai, Y., Jackson, M., Martin, C., Saad, G., McAleer, C. W., Wang, Y., Lavado, A., Long, C. J., & Hickman, J. J. (2018). Stem cell derived phenotypic human neuromuscular junction model for dose response evaluation of therapeutics. Biomaterials, 166, 64–78.
Southam, K. A., King, A. E., Blizzard, C. A., McCormack, G. H., & Dickson, T. C. (2013). Microfluidic primary culture model of the lower motor neuron-neuromuscular junction circuit. Journal of Neuroscience Methods, 218(2), 164–169.
Altman, T., Geller, D., Kleeblatt, E., Gradus-Perry, T., & Perlson, E. (2019). An in vitro compartmental system underlines the contribution of mitochondrial immobility to the ATP supply in the NMJ. Journal of Cell Science, 132(23).
Machado, C. B., Pluchon, P., Harley, P., Rigby, M., Sabater, V. G., Stevenson, D. C., Hynes, S., Lowe, A., Burrone, J., Viasnoff, V., & Lieberam, I. (2019). In Vitro Modeling of Nerve–Muscle Connectivity in a Compartmentalized Tissue Culture Device. Advanced Biosystems, 3(7), 1–14.
READINESS LEVEL ④/ ⑧ Protocol done