

BAC

#389.06 - A NEW HUMAN BRAIN ORGANOID-ON-CHIP MODEL MEETING BIOLOGICAL AND INDUSTRIAL REQUIREMENTS OF NEUROLOGICAL PRECLINICAL STUDIES

		¹ NETRI, 6900
KGROUND	Appropried Signature Signature <tr< th=""><th>es Cerebral org reproducibil • A r • An • Co</th></tr<>	es Cerebral org reproducibil • A r • An • Co

NETRI'S DUPLEX WELL MICROFLUIDIC DEVICE. **EXPERIMENTAL** DESIGN

Adapted to 3D cell culture.

Two compartments separated by a porous membrane:

- Open well for 3D culture (5x5x5mm; LxWxH)
- Perfusion channel to enhance nutrient diffusion

Adapted to industrial transfer.

- Standardized fabrication procedures
- Compatible with automation processes and adapted to pharmaceutical readouts (microscopy, MEA, HTS)

RESULTS

ESTABLISHMENT OF A STANDARD PROTOCOL FOR **ORGANOIDS ON-CHIP CULTURE.**

Viability and expected morphology up to D+60 Anti-adherence protocol established to limit organoid adhesion

- Timepoint D+2: partial adherence
- Medium renewal #3: partial adherence

Tendency to obtain more reproducible sizes onchip compared to 24-well controls

Fig. 4: Cerebral organoids growth from D+2 until D+60 of culture, for control organoids and organoids-on-chip with method #1 of medium renewal (Mean ±SEM, n=3 per group). Statistical differences between the groups were determined by simple linear regression (****p<0.001): D+2 vs D+11, D+2 vs D+18, D+11 vs D+18: ns, P24 grp1 vs grp3: ns; P24 grp1 vs grp2, P24 grp3 vs grp2: ****).

CONCLUSION & PERSPECTIVES

By combining **NETRI's microfluidic device** and **cerebral organoids**, we have set up a Brain Organoid-on-Chip platform meeting the needs of preclinical applications with organoids exhibiting expected characteristic morphology, cell types, cytoarchitectures, and transcript levels of expression at D+60.

Our cerebral organoids on-chip protocol allows:

• Several possible timepoints of EBs introduction and methods of medium renewal on-chip, depending on the experimental design

Presented on 2023-11-14 Washington DC, USA

Héloïse Castiglione^{1,2,3}, Camille Baquerre¹, Lucie Madrange^{2,3}, Frank Yates^{2,3}, Pierre-Antoine Vigneron^{2,3*}, Jessica Rontard^{1*}, Thibault Honegger¹ Lyon, France, ² SupBiotech/CEA-IBFJ-SEPIA, 92260 Fontenay-aux-Roses, France, ³ SupBiotech, Ecole d'ingénieurs en Biotechnologies, 94800 Villejuif, France

ganoids appear as relevant alternative solutions to model human cerebral cellular organization and development in 3D. Nevertheless, implementing organoids for large-scale drug screening requires lity and scalability. To address this challenge, we propose to generate a Brain Organoid-on-Chip platform with:

microfluidic technology for recreating cellular microenvironment on-chip cell culture protocol to improve reproducibility of cerebral organoids mpatibility with a full process of **cerebral organoid characterization**

CONTACT

www.netri.com Phone: +33 4 78 23 08 66 Email: contact@netri.com

Future perspectives include further organoid viability characterization, onchip analyzes (microscopy, MEA) and complexification of the model by adding cell types for **blood-brain barrier** (BBB) modelling.

Our Brain Organoid-on-Chip platform paves the way for HTS drug screening and toxicological assessments.

