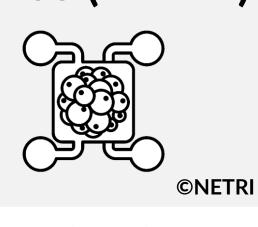


Team NETRI / SupBiotech-CEA: Prediction Algorithm for Neurotoxicity Evaluation based on Brain Organoid-on-Chip

Héloïse Castiglione^{1,2,3}, Benoît G. C. Maisonneuve¹, Lucie Madrange^{2,3}, Thomas Lemonnier^{2,3}, Camille Baquerre¹, Frank Yates^{2,3}, Pierre-Antoine Vigneron^{2,3,*}, Jessica Rontard^{1,*}, Thibault Honegger¹


¹NETRI, France; ²SupBiotech, Ecole d'ingénieurs en Biotechnologies, France; ³CEA/IBFJ/SEPIA, France; heloise.castiglione@netri.com; pierre-antoine.vigneron@supbiotech.fr

Microfluidic device (NETRI)

Brain-Organoid-on-Chip

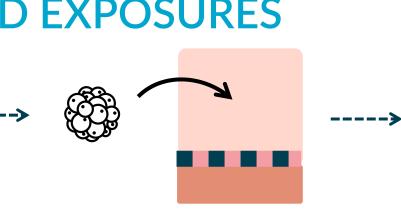
Enhanced cerebral organoid reproducibility Promising technology to facilitate organoid scalability & to overcome current limitations due to high organoid heterogeneity [1]

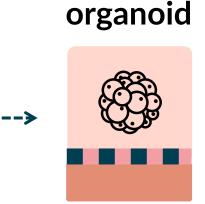
Neurotoxicity studies: NAM Designathon

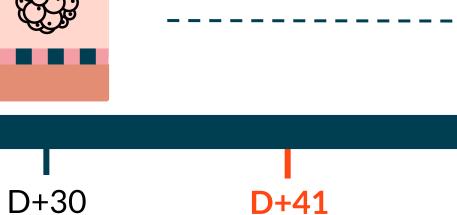
- Participation to EPAA NAM Designathon Challenge: proposition of a NAM-based classification system for predicting compound toxicity
- Evaluated compounds: vanillin & biphenyl-2-ylamine

End of

culture


D+61


D+2

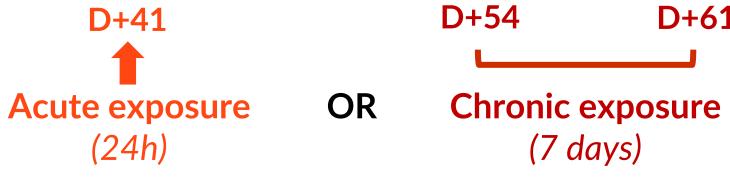


D+18

On-chip introduction

Early cortical

D+41


(24h)

Biphenyl-2-ylamine (CAS n°90-

41-5): 20, 200, 2 000 μM (meOH)

Vanillin (CAS n°121-33-5):

100, 1 000, 10 000 nM

Biphenyl-2-ylamine: $200 \, \mu M \, (meOH)$

Controls: non-exposed and vehicle-exposed organoids

EXPOSURE SCORING

Scoring scale: 5 to 0

QUALITY SCORING

 For compound-exposed cortical organoids (acute & chronic)

(from most to least optimal)

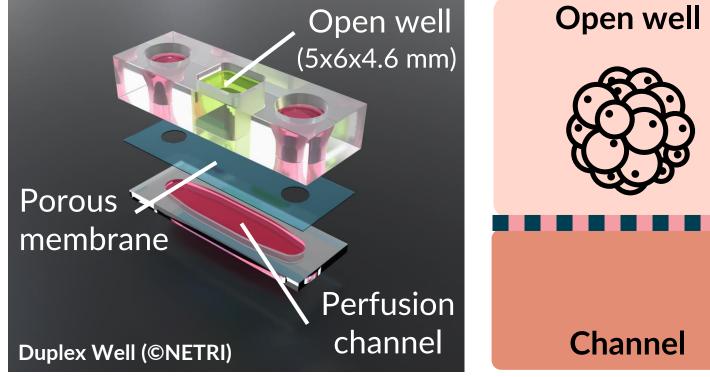
Cortical organoid characterization (D+60)

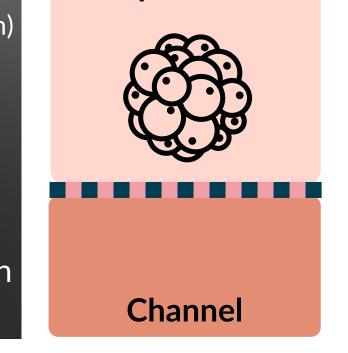
Compared to controls

PREDICTION ALGORITHM

 For compound classification into 3 neurotoxicological categories

NETRI's MICROFLUIDIC DEVICE

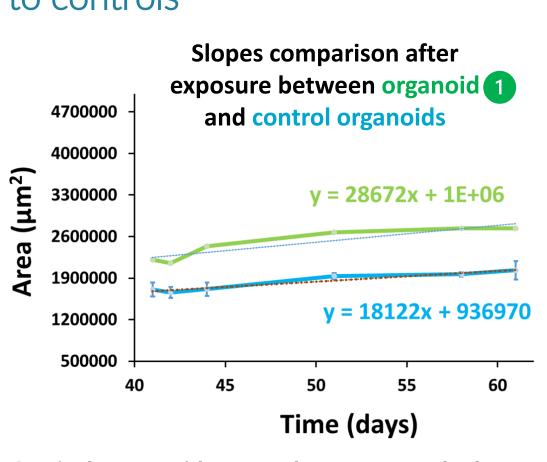

Adapted to 3D cell culture:


Two compartments separated by a porous membrane:

- Open well for 3D culture
- Perfusion channel

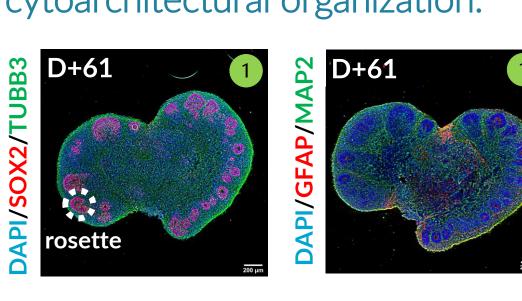
Adapted to industrial transfer Pumpless

Example 1: acute exposure

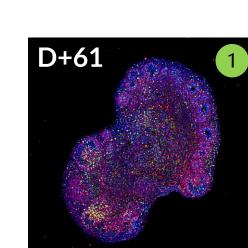


Timeline of cortical organoid generation and culture protocol (adapted from [2]), on-chip culture conditions, compound exposures, and Duplex Well schematic representations (hiPSCs: human induced pluripotent stem cells, EB: embryoid body).

RESULTS COMPOUND CLASSIFICATION USING THE PREDICTION ALGORITHM

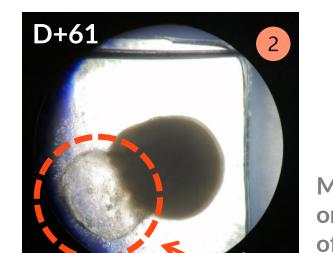



Cortical organoids growth curves and slopes between exposure (D+41) and end of culture (D+61) (for controls: mean \pm SEM, n=4).


Expected cell types and optimal cytoarchitectural organization:

Immunofluorescence progenitors (SOX2), neurons (TUBB3, MAP2), and astrocytes (GFAP) (Thunder microscope, Leica, objective 20X, circle: rosette).

Similar apoptosis & DNA damage levels as controls:

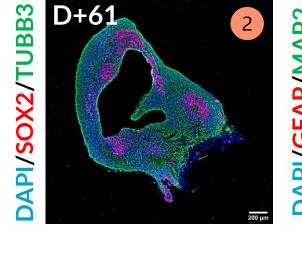

Immunofluorescence staining of apoptosis (CCASP3) and DNA damage (yH2AX) (Thunder microscope, Leica, objective 20X).

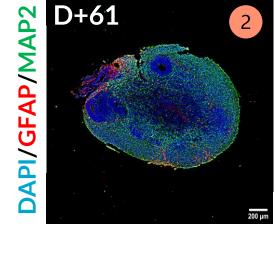
Morphology 2 000 μM biphenyl-2-ylamine Overall color and structural density/compactness: 1 and 2 = score 4 Border integrity: 1 and 2 = score 4 All scores ≥ 4 Any score = 0- Presence/absence of cysts: 1 = score 4; 2 = score 2 $1 \le at least one score \le 3$ Growth profile No Slope between exposure and end of culture timepoints: similar to controls (± 20 000 units) Yes Presence of the three Presence of the three No cell types: neural progenitors, ! cell types: neural progenitors, populations neurons & astrocytes neurons & astrocytes Yes Yes Proportion of each cell Cellular type similar to controls Yes Score < 4 Astrocyte reactivity Astrocyte reactivity | Score < 4 similar to controls similar to controls Score ≥ 4 Score ≥ 4 Cellular density similar ! Cellular density similar ! No to controls to controls Yes Yes Rosettes at least Rosettes at least similar to controls similar to controls Yes Yes Cysts and zones without cells i No at least similar to controls Yes Cytotoxicity Apoptosis and DNA damage ! At least one score < 4 markers similar to controls All scores ≥ 4 **High Concern Potential Concern Low Concern**

Compound

Morphology: altered

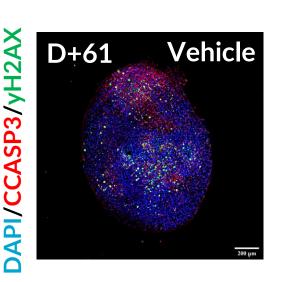
Example 2: acute exposure with

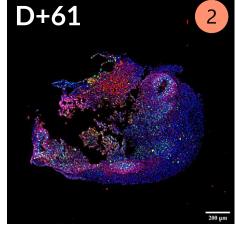



Morphology of cortical organoid #2 at 61 days of culture (brightfield, 5X, circle: cyst).

Presence of a large cyst (> 25% of total surface area)

Expected types, disorganized cytoarchitectures:


- Altered pattern neurogenic areas (rosettes)
- Presence of a **cyst** and a large zone without cells (necrotic core)



Immunofluorescence staining progenitors (SOX2), neurons (TUBB3, MAP2), and astrocytes (GFAP) (Thunder microscope, Leica, objective 20X).

Higher apoptosis & DNA damage levels compared to controls:

for

Immunofluorescence staining of apoptosis (CCASP3) and DNA damage (yH2AX) (Thunder microscope, Leica, objective 20X).

CONCLUSION

- Brain Organoid-on-Chip platform + Scorings + Prediction Algorithm: adapted to neurotoxicity evaluations
- Vanillin exposures: no discernable impact on morphology, cytoarchitectures & viability >> low concern
- Biphenyl-2-ylamine exposures: altered morphology & disorganized cytoarchitectures in a dose-response manner → high concern •

Compound

Compound

PERSPECTIVES

Implementation

cytotoxicity characterization

NAM DESIGNATHON

Paves the way for neurotoxicological studies & drug screening

of additional criteria

Presented on www.netri.com • Phone: +33 4 78 23 08 66 2024-03-20 to 22,

organoid